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ABSTRACT

Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for

viscous flows are presented. Both methods are uniformly valid across the full Mach

number range, ke., from the incompressible limit to high supersonic speeds. The tirst

method is an "optimized" version of a previously developed global pressure relaxation

RNS procedure. Considerable reduction in the number of relatively expensive matrix

inversion, and thereby in the computational time, has been achieved with this procedure.

CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible

and low subsonic). The second method is a time-marching, 'linearized' convection

RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single

LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires

back-substitution with this LU and the corresponding residual vector at any cross-plane

location. This method is not time-consistent, but has a convective-type CFL stability

limitation. Both formulations are robust and provide accurate solutions for a variety of

internal viscous flows to be provided herein.
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1. INTRODUCTION

Various asymptotic approximations to the complete Navier-Stokes (NS) equations

have been used to provide detailed, efficient and accurate flowfield descriptions for a

significant class of large Reynolds number (Re) flows [I-5]. If these approximations are

combined in a single system of composite equations, the resulting time-dependent system

is termed the Reduced Navier-Stokes approximation (RNS). The RNS system in

appropriate (_,rl,_) coordinates is such that only streamwise or _ diffusion terms in the lull

NS equations are higher order and therefore neglected throughout the flow domain. These

terms are retained in a deterred corrector (DC) which may be recovered when necessary.

The lowest order R_NS approximation consists of the full Euler equations plus all the

boundary-layer diffusion terms required to satisfy appropriate no-slip boundary conditions

on various solid boundaries. In this manner, all acoustic (elliptic) intluences contained in

the full Navier Stokes (NS) equations, are retained. The resulting RNS system allows for

upstream or elliptic influence and contains all the dominant physics associated with large

Reynolds number strong viscous-inviscid interactions. A pressure based flux-splitting

procedure is applied to the Euler component of these equations. This leads to a global

relaxation procedure for the pressure, and for velocities in reverse flow regions. The

convective and acoustic tluxes are treated independently. Therefore, the appropriate

domain of dependence is automatically represented by the differencing of the convective

and acoustic (pressure) gradients.

Two efficient, primitive variable RNS/NS solution procedures, valid across the full

Mach number range, are presented in this paper. The primary features of these solvers are

(a) that the boundary conditions and discretization procedure are controlled by the physics

of the of the lowest order terms of the RNS system: (bt that the higher order dif_sion, DC

terms,in the NS system can be introduced it" necessary in the final RNS inversion to obyain

the full NS solution; (c) that they possess sharp shock capturing properties: within three

grid points; (d) unlike other Euler-based Navier-Stokes methods, that become

unconditionally unstable in the incompressible limit, these formulations perform efficiently

for all Mach numbers from incompressible to high supersonic and: (e) a pressure velocity

flux-split discretization is implemented in both of these solvers.



The first of the RNS/NS solvers is an optimizedversionof a global pressure

relaxationRNSprocedurepreviouslypresented[1-3]. The maindrawbackof the original

algorithm is the cumulativelyhigh numberof expensiveLU of cross-plane coefficient

matrix inversions that are required. At least three non-linear Newton iterations or LU

inverions are needed at each cross-plane. For three-dimensional (3D), turbulent flows,

wherein t_e grids are needed to resolve the thin boundary layers, the matrix inversions

become computationally expensive and impacts adversely on the efficiency and speed of

the solution procedure. One of the primary goals of the present study is to minimize this

cost. Toward this end various optimizational techniques are adopted: (a) recast the

governing equations in "delta" form, so that a single LU inverse at a given cross-plane can

be applied as an approximate LU for several subsequent stations downstream; (b) global

under-relaxation of flow variables, with time terms in the governing equations (c) local

under-relaxation of the flow variables during the non-linear iterations and; (d) a judicious

initialization of flow variables at a given cross plane with those computed at a preceding

station in the prior sweep. With these techniques considerable reduction in the required

number of LU inversions, and consequently in the computational time results. For

instance, the optimized version of the code runs about 15 times faster than the original

"unoptimized" procedure for laminar, incompressible flow in a 90 ° curved duct, and a

33x41x41 grid. The optimized code requires a single LU inverse to attain a steady-state

solution. This compares with 174 inverions per sweep for the original version. In this

particular case, 32 global sweeps are required to converge the maximum residuals to the

prescribed tolerance level. Note, that it requires exactly "imax- 1" number of global sweeps

for incompressible flows to converge to machine accuracy; where "imax" is the number of

stations in the streamwise direction, as the downstream pressure boundary condition

traverses a single grid cell for every pass.

The second algorithm, i.e., 'linearized' convection model, is a time-marching RNS

procedure. This is a straightforward algorithm that involves just a single LU inverse at the

imlow cross-plane. The method marches in pseudo-time with the application of a single

back-substitution, for the LU inverse and the corresponding residual vector at each cross-

plane, during a given sweep. With this mathematical operation, all the flow variables are



marcheda single time-stepin a given sweep. Note, that this procedureis not time-

consistent.This processof time-marching,is repeateduntil a steady-stateksattained.A

convection-onlyCFL type time-limitation,discussedin reference[4-5] for the time

consistentalgorithm,is applicablefor this method.Sinceflow variablesat all cross-plane

locationscanbe marcheda singletime-stepsimultaneouslyi.e., they arefully uncoupled

numericallyin theaxialor flow direction,this procedurelendsitsetf to parallelization.This

methodis particularlyefficientfor incompressibleand low subsonicMachnumbers.For

supersonicflows, the "optimized'pressurerelaxation procedure is more suitableand

thereforepreferred.

Both methodsimplementa pressurevelocity flux-split discretization[1-3]. The

RNS/NSsystemof equationsis quasi-linearizedanddiscretizedasdescribedpreviouslyin

[4,5]. A system of simultaneousalgebraic equations (for the cross-planein three

dimensions)is solvedwith asparsematrixdirect solver (SMDS). Theuseof thissolveris

dictatedby robustnessandconsistencyconsiderationsdiscussedin previouspapers[1-3].

Both methodshavebeenvalidatedthrougha seriesof three-dimensionalinternal

flow configurations:(a) Laminarandturbulent,incompressibleflow in anS-shapedduct;

(b) laminarandturbulent,compressibleflow in a symmetric,squarecross-sectionchoked

convergent-divergentnozzle and, (c) turbulent, supersonic flow in a generic inlet

geometry.

The algebraicBaldwin-Lomaxeddy viscositymodel, modifiedto includemultiple

wall effects,is employedfor turbulenceclosure.

2. GOVERNING EQUATIONS

The reduced form of the Navier-Stokes (RNS) equations is employed for both of

the flow solvers considered herein. All higher order axial diffusion terms are retained only

in the deferred-corrector (DC). The DC is explicitly introduced in the final RNS inversion

to obtain a full NS solution, see ref. [101

In order to obtain the t-real RNS system of equations, the full NS equations are

transformed from Cartesian into non-orthogonal generalized curvilmear coordinates in

strong conservation form. These are as follows:



Continuity:

(1)

X-momentum equation:

(2)

Y-momentum equation:
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Z-momentum equation:
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Energy equation (constant total enthalpy):

Y-1 Mo_ (1 - q 2 ) (5)T=I+_

Equation of State:

T - (6)
P

By eliminating temperature T from the equations (5) and (6), the following relationship ks

obtained:

2rv P
(7)

/9 = 2+(l_y)M2(l_q2 )

It is this form of combined energy equation and the equation of state that is used in the

present study. In the incompressible limit, the non-dimensional density is set to unity. The

; , etc., appearing on the rio.ht-hand-side (RHS) inviscous terms, viz, r_, z'y, z'_", ry

equations 1-4 have been discussed previously in [6]. The definitions of the metric

quantities, e.g., gx, ,,y,_ rtx, _,y," etc., and the contravariant velocities U, v. ;mdW

appearing in these equations have also been defined in [6]. The RNS set of equations are

obtained from the full NS equations by simply dropping the higher order diffusion ({-

derivatives) terms. These are retained in the DC. The final form of the momentum

equations used in these solvers are obtained by taking the covariant momentum balances in

the ,_,rl,_, directions.



3. DISCRETIZATION

The pressure velocity flux-split technique, originally developed by Rubin and Lin

[1,7], is applied to the RNS equations in generalized non-orthogonal curvilinear

coordinates. Fig. 1 depicts the discretization location of the equations and their appropriate

groupings, at a typical cross-plane, of a given axial station _={i- The _-momentum and the

energy equations are discretized at the grid points. The continuity equation is cell centered

and the 1"1and G-momentum equations are located at the hall" points. All _-derivatives in

the continuity equation are backward differenced and the cross-tlow (rl,_) derivatives are

two-point trapezoidal differenced. All axial convection terms in the momentum equations

are upwind or flux-vector differenced and the cross-flow convection terms are either 3-

point central differenced or two-point trapezoidal differenced. This depends on the

location at which these derivatives are discretized. All diffusion terms are second order

accurate three-point central differenced. The streamwise pressure gradient P_ in the {-

momentum equation is flux split into positive and negative contributions in accordance

with the pressure flux-vector splitting technique [I ]:

1_ = co( t_ Hyperbolic + ( 1 - co)( _ ) Elliptic

or

l/ i>/ t;.1
g i- _X-_ + (1-co. t+_ 1 ) -A_-

or equivalently

P// -P//-1

(8)

where /_ is located at the same grid location as the velocity ui , and is given, to second

order in A_, by



Pi =co, I Pi+(1-co
'+-5 " 1)P+l

(9)

For constant stagnation enthalpy, the variable co in the above equations is given as

co _< min 1,

1+(_'- 1)M_

where

U Ugx + Vgv + W{z
m. -

- _9 I/9

(10)

co. 1 " reflects the initial value
In equation (8) the term co(PY) Hyperbolic or t-_- kg

or the parabolic/hyperbolic component in the streamwise pressure gradient. The term

P'+I - Pi
(1- CO)(Px ) Elliptic or (1- co., I ) 7_- reflects the upstream influence or the

boundary value or the elliptic component of the pressure gradient. The discretization of P=

implies that the "unknown" pressure Pi at the axial (marching) location i, is staggered at a

distance (I-m)A_ upstream of the velocity u i, v i, and w i. The pressure _ at the grid point i

is given by eqn. (9). In the incompressible Limit, ¢_-0, and the pressure at the grid point i is

= P+I" For supersonic flows, o3=I and _ = Pi- By neglecting the negative flux

contribution of the streamwise pressure gradient, Le. by retaining only the hyperbolic

component in P_

r,.=co. 1 ei- -t]g t_ 3. A,_ , the multiple-sweep global pressure relaxation tLNS formulation

reduces to the single-sweep PNS (Parabolized Navier-Stokes) formulation. The

discretization of cross-flow pressure gradients Prl and P_ in the q-momentum and the _.-



momentum equations is quite straightforward and is given by two-point trapezoidal

differencing.
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Fig.l Implementation of boundary condition in a _+ cross-plane for an internal flow

geometry.

4. BOUNDARY CONDITIONS

The appropriate boundary, conditions, consistent with the discretized system of RNS

equations, are ms follows:

inflow boundary , _ = ?,in ) "

In the "streamwise" or 5.. direction,

derivatives are prescribed as follows:

at the inttow boundary, all flow variables or _



tt = Uin (rl, _)

v = Vin(rl,()

w = win(rl,_)

M = Min (zero for incompressible flow)

p = Pin (r/,_')

P,.,. = 0 (for internal, compressible flow)
_g

For incompressible flow calculations, the inflow pressure is not prescribed, but is

calculated from P-i-1 = _" For subsonic flows, the pressure Pi-1 as defined by eqn. (9),

still retains some influence of the prescribed intlow solution Pi-1. In these calculations the

value of F__I changes to reflect the upstream pressure influence, see Rosenbaum and

Rubin [8]. This allows for adjustment of inflow mass through changes in Pi and hence O/n-

outflow boundary (_ = _out ) :

At a subsonic or incompressible outflow, 0 < M,. < 1, without flow reversal, only the

pressure or pressure gradient is required. For the PNS "supersonic" step, the negative

pressure tluxes are not present, and therefore, the pressure is calculated at this boundary.

Due to the presence of a "subsonic" boundary layer region, even in supersonic viscous

flow cases, the pressure at the exit boundary, computed from the PNS step, is prescribed

as the outflow pressure boundary condition for subsequent RNS steps.

For zero flow reversal at the outflow, the velocities are calculated from the solver.

For small reverse flow at the exit, the velocities can be prescribed from available

experimental data, or computed by neglecting the negative velocity flux at the outflow

boundary,. This is similar to a FLARE approximation used in boundary layer theory. For

the present study, the FLARE approximation is applied only at the outflow boundary.



wall boundary:

No slip and zero-injection (u=O, v=O, w=O) for viscous flow computation.

Zero-vorticity condition for inviscid/Euler computation.

Pressure is computed at all wall grid points using the special regroupings discussed

in [4,5].

The density is computed at all wall points from the constant stagnation enthalpy

condition.

free boundaries (external flow):

The inplane velocities, pressure and density are specified. The velocities normal to the free

boundary are computed.

5. SOLUTION PROCEDURE

For both procedures considered herein, the discrete system of fully coupled RNS

system in generalized, non-orthogonal, curvilmear coordinates, at a given cross-plane, is

written in the tbilowing delta form: [a]{ax} n+l = (r) n ; where [A] represents the sparse

cross-plane coefficient matrix; {ax} n+l represents the solution vector in delta form and

(r) n is the right-hand-side residual vector, evaluated at a previous time or iteration. Since

the primary goal is to drive the local cross-plane residuals to a prescribed tolerance level

an "exact" inverse of [A] is not required. An approximate LU that is "close-enough" m

character to the exact one is found sufficient. In other words, in delta form, an exact LU

of the coefficient matrix at an arbitrary cross-plane, can successfully drive the residuals, at

several subsequent "streamwise" stations, to an acceptable level of accuracy. Furthermore.

it" the "optimizational" techniques, mentioned in the Introduction of this paper, are

implemented appropriately, then just a single LU of the coefficient matrix, at the inflow

cross-plane, has been found to be sufficient for the entire computation. Although, this

might result in an increased number of back-substitutions to resolve local non-linearities,

the overall cost is considerably reduced. Back-substitution operations, with an



approximateLU, is applied iteratively until the local non-lmearities are resolved and the

local residuals have achieved a prescribed tolerance level. If during this iterative back-

substitution process the residuals show signs of growth, or if the local convergence of

non-linearities become excessively slow, a new LU is initiated. In addition, the number of

required LUs can be further reduced with the aid of under-relaxation, both globally

(inclusion of time-terms) and locally. This process of back-substitution and LU

decomposition is continually repeated until there is local convergence of all residuals at all

the axial stations, in a given sweep. Multiple sweeps are generally required to converge all

residuals globally.

For the linearized convective time-marching RNS procedure, only one LU inverse

at the inllow cross-plane is required. This linearizes the non-linear terms about the

prescribed intlow conditions. Unlike the global pressure relaxation procedure, the non-

linearities are not resolved locally but in a global fashion. A single back-substitution

operation is required at any given axial cross-plane for all axial sweeps. As a result, all the

flow variables in the computational domain evolve in pseudo-time through a single tame-

step. This process is repeated until steady-state conditions are attained. A convection-only

CFL limitation is applicable, see ref. [4-5].

Fig. 2 depicts the comparison of convergence histories for the linearzied convection, time-

marching model and the fully-implicit, pressure relaxation procedure. The flow problem

under consideration is an incompressible, laminar flow in an S-duct at Re=790. The grid

has 31 stations in the axial direction and 21x21 in a cross-plane. As seen in the figure, the

convergence history, for the linearized convection model shows a more gradual downward

trend than the pressure relaxation model However, the computational time required bv

both methods to converge to a steady-state is about the same i.e., approximately 50

minutes on a RISC/6000 workstation. As noted earlier, apart from the difference in time-

steps used in the two methods, the linearized convection model does not converge non-

linearities at each axial location. This is required in the pressure relaxation procedure. The

gain in time bv the former method ks clearly outweighed by the need for a larger number of

axial sweeps or "time-steps" for convergence.
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Fig. 2 Comparison of convergence histories for the Linearized convection model and

the pressure relaxation procedure for a laminar, incompressible flow in an S-duct.

Both procedures are quite robust and have been implemented in the same code.

This provides the flexibility to switch from one algorithm to the other for a given flow

problem in a single run.

6. RESULTS

In order to validate these RNS/NS flow solvers, a variety of 3D internal flow

configurations, ranging in speed from the incompressible limit to high supersonic Mach

number, have been investigated. An algebraic, zero-equation Baldwin-Lomax model,

modified to handle multiple walls, has been applied in all the turbulent t'low cases.

Incompressible flow in an S-shaped duct: Incompressible flow in an S-shaped duct of

constant area square cross-section is investigated. Two flow Reynolds numbers are

considered, Re=790 (laminar) and Re=40,000 (turbulent). A combination of the linearized

convection and the 'optimized' global pressure relaxation solvers is applied. The numerical

results are compared with the measurements of Taylor et al. [9]. The secondary, flow

phenomena in a S-duct is mainly pressure driven because of the very smooth-bend in the



walls. Axial flow separation is not observed. Accurate prediction of the boundary layer,

even in the laminar case, is required to capture the small but complex secondary flows.

The grid m the cross-plane must be adequately refined in order to correctly predict this

behavior. Grids with 33 axial stations and with 31x31 or 41x41 points in the cross-plane

are prescribed for the laminar and turbulent cases, respectively. The symmetry plane grid

for the turbulent case is shown in Fig.3 The tinearized convection code is applied in the

initial phase of the computation to drive the maximum residuals down to 0.01. Thereafter,

the "optimized" fully implicit relaxation solver, with int'mite time step, is automatically

initiated. In this mode, the residuals reach the prescribed levels of tolerance, typically

0.0001, relatively fast. The convergence history of the laminar computation is depicted in

Fig.4.

2 m

Turbulent, Incompressible S-duct (Re=40,O00)

Grid (33x41x41) along the mid-plane

o 2 s

Figure 3. Typical view of the geometry and the grid in the symmetry plane
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Fig 4. Convergence history for a laminar, incompressible flow in an S-duct

The streamwise velocity profiles, for both laminar and turbulent flows, on the

symrnetry/midplane of the S-duct, is compared with the measured data of Taylor et al. [9].

Results at several axial stations, shown in Figs. 5(a-e) and Figs. 6(a-e), are depicted. There

is an excellent agreement with the experimental data for both laminar and turbulent flows.

This computation requires about 4 hours for the laminar and about 6 hours for the

turbulent case on the RISC/6000 machine. This is roughly equivalent (without

vectorization) to 30 and 50 minutes, respectively, on a Cray YMP supercomputer.

In order to demonstrate the effect of the reduction in the required number of LU

inversions on the computational time, a laminar incompressible case was considered. A

single LU inversion is required by the "optimized" version of the global pressure relaxation

solver, while 174 LUs are required by the original code during each axial sweep. Since the

number of global sweeps approximately equals the number of nodes in the axial direction.

this results in an enhancement of almost 15.



e_oJ_ _u_ o.,so cLTg I_o

COnl_Wm_nl
• EJ_mwr_m ew_

I,o

1

_TA _ON 4

°_

!,,...,,-,.,.
Figures 5(a-e). Comparison of the laminar axial velocity profiles on the symmetry

plane at stations 1-5 along an S-duct
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(b) Turbulent, 3D convergent-divergent choked nozzle: Turbulent flow in a symmetric,

convergent-divergent nozzle, with square cross-section, and an area ratio,

Ainlet/Athroat=3.41, is computed with the linearized convection procedure. The Rcynold,,_

number is Re=5xl05 based on the throat diameter. This computation is tbr design point

conditions, so that the pressures are prescribed at both ends of the nozzle in accordance

with the results of quasi-iD analysis. A Mach number of 0.2 is prescribed at the inlet. As

expected, the nozzle is choked with a Mach number of unity at the geometric throat. At

the exit cross-plane, an average Mach number of 2.8 is computed. This is in excellent

agreement with quasi-lD thoery. A grid with 31 axial stations and a highly stretched

41x41 mesh in the cross-plane is employed. Figs.7-8 depict the Mach number and pressure

contours on a symmetry plane. The computed Mach number ratio between the inlet and

the exit are in close agreement with quasi-ID analysis.

o,o
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sur_nov_ Tum,_m _ No.',.

Sym=mry _ (_,)

P_..SO0,O00; _ _.0.2; ,_,,_ ..3.51

It,ec_ m
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Figure 7. Mach number contours on a symmetry plane
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Figure 8. Non-dimensional pressure contours on a symmetry, plane
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Figure lO(a). Mach number at the exit cross-plane.
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Figure lO(b). Mach number at the throat cross-plane.

Fig.9 depicts velocity vectors on a symmetry, plane, and Figs. 10(a-b) depict Mach number

at the exit and throat axial stations, respectively. Note, that unlike other NS flow solvers,

there is no deterioration in computational performance in the lower spectrum of Mach

number.



(c) Effect of back-pressure on a laminar, compressible flow through a choked

convergent-divergent Nozzle: In order to study the effect of the back-pressure, 'Pb', on

the pertbrmance of a convergent-divergent nozzle, a laminar flow at Re=500 is

considered. The nozzle is identical to the one considered for the turbulent case. The grid

has 51 axial stations and 33x33 nodes in a cross-plane. Mild stretching, of about 1.1 at the

walls, ks applied. This was adequate to resolve a relatively thick boundary, layer associated

with the lower Re. In this study, a series of computations with different back pressures at

the exit was carried out. The first calculation was for a steady-state solution at design

conditions, i.e., pb=Pe (complete expansion). Here 'Pe' denotes the exit pressure that

would be attained under design conditions. From quasi-one-dimensional theory., the

pressure ratio pe/pin for design conditions ks approximately 27 for an area ratio

Ae/Athroat of 3.51. Subsequently, the back-pressure is raised in a gradual fashion. First,

the back-pressure is increased to Pb=3.6Pe and a steady-state solution is obtained for this

condition with the design-point solution as an initial guess. Next, the back-pressure i.s

further increased to Pb=6.25Pe and again a steady-state solution ks obtained with the

previously obtained steady-state solution at Pb=3.6Pe applied as the starting solution. For

this back-pressure, m,dal flow separation associated with oblique shock tbrmation _s

predicted. In order to assess the effect of area ratio Ae/Athroat, the flare angle of all the

walls in the divergent section of the nozzles ks then reduced from 5 to 3 degrees. This

decreases the area ratio Ae/Athroat from 3.51 to 2.3. The convergent section of the

nozzle is not altered. The design point pressure ratio, pe/pin, /'or the modified nozzle

geometry ks reduced to about 13.5 from quasi-one-dimensional analysis. The t_al imposed

back-pressure, previously 6.25 times the design e_t pressure in the original nozzle

geometry, now reduces to 3.37 of the design e,-dt pressure i.e.. Pb=3.37pe . A steady-state

solution ks now obtained for the modified nozzle. For this calculation, the steady-state

solution associated with the original nozzle and Pb=6.25pe . ks applied as the starting

solution. As expected the reverse flow regions, that were present in the original design no



longerexists tbr the modified nozzle case. This provides a rapid tool tbr nozzle design

studies. This computation required only 2 hours on RISC6000.

Subsequent to the design point computation, only divergent portion of the nozzle

need to be evaluated. As long as the nozzle remains choked any increment in the back-

pressure does not affect the flow conditions upstream of the throat. Therefore, each

steady-state solution, at higher back-pressures, was obtained relatively inexpensively. It

took approximately 7 hours on the IBM RISC/6000 machine tbr the design condition

computation. Each subsequent run took only about 2.5-3 hours. This translates to

approximately 50 and 18-23 minutes, respectively, on a Cray YMP supercomputer.

The effect of higher back-pressure on the pressure, skin friction, axial velocity and

cross-flow velocity is depicted in Figs. 11-14. For pb=Pe or pe/pin=27, complete or

optimal expansion takes place. For Pb=3.57pe or pe/Pin=7, axial flow separation is

imminent. This is visible from the skin friction coefficient along the lower wall in Fig. 12.

Only a slight adverse pressure gradient is evident. As the back-pressure is further

increased to Pb=6.25Pe or pe/Pin--4, two strong oblique shocks are generated. Behind

these shock waves the flow separates and the pressure increases to the imposed back-

pressure. Since the core the flow is supersonic, the effect of increased back-pressure is

propagated upstream through the subsonic boundary layers close to the wall. The skin

friction and axial velocity clearly show the existence of the reverse flow region. Fig. 15

shows the streamlines in the (x-y) symmetry plane, wherein reverse t]ow regions are

clearly evident. Fig. 16 depicts the streamlines in the (x-y) symmetry, plane for the modified

nozzle. As expected, the shock induced reverse flow regions disappear.
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symmetry plane for various imposed back-pressures
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Figure 15 Streamlines on the (x-y) symmetry plane for the imposed back-pressure of

pb=6.25Pe & Ae/Athroat of 3.51
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Figure 16 Streamlines on the (x-y) symmetry plane for the imposed back-

pressure of Pb=3.37pe & Ae/Athroat of 2.3

Grid Convergence and Accuracy: In order to assess grid convergence and accuracy of

these calculations, three grids, 31x17x17, 31x33x33 and 51x33x33, with retmement in all

three directions, were considered. Calculations were performed at design conditions for a

laminar, compressible flow. Although Figures 17-20 suggest further grid ret-mement in all

three directions to obtain grid independence, the solution obtained on the thaest grid

51x33x33 can be considered reasonably accurate. All plots, except pressure, show

significant disparity between the solution obtained with a coarse 31x17x17 grid and that

obtained with finer 3 lx33x33 and 51x33x33 grids. The pressure, however, is not affected

by grid refinement. This is due to a predominantly inviscid nature of the flow. However,

the accuracy of velocities and skin friction calculation is enhanced by clustering more grid

points in the boundary, layer. The effect of axial ret_nement is minimal on skin friction. It.

however, increases the peak slightly of both, axial and cross-flow components of the

velocity. The skin friction appears to be affected solely by refinement in the cross-plane.

,.M:ter an initial decline in the skin friction, due to a developing boundary tayer, it

continuously increases throughtout the length of the nozzle. Both, skin friction and

pressure plots, suggest an accelerating flow in the nozzle. Faster accleration rates are seen

in the divergent section. A sudden expansion near the throat is evident in the pressure plot.

This ks also reflected in the increment of skin friction in the proximity of the throat. The

axial velocity maximum occurs closer to the wails than the center line. This is seen in the



axial velocity plot of Fig. 19.The reasonbeingthe exLstenceof extremelythin boundary

layerson the four adjacentwalls,causedby a tremendousflow acceleration,that do not

interactwith eachother in thecentralcore region.As a result,a largeportion of thecore

flow remainsinviscid.
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Figure 17 Skin friction coefficient Cf on the lower wall of the (x-y) symmetry plane

for 31x17x17, 31x33x33 and 51x33x33 grids
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Figure 18 Non-dimensional pressure on the lower wall of the (x-y) symmetry plane

for 31x17x17, 31x33x33 and 51x33x33 grids
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Figure 19 Axial velocity "u" at the throat for 31x17x17, 31x33x33 and 51x33x33

grids

Figure 20 Cross-flow velocity "v" at the throat for 31x17x17, 31x33x33 and

51x33x33 grids

(d) Turbulent, Supersonic flow in a Generic Three.dimensional, 10 ° single-ramp inlet:

Turbulent, supersonic flow, in a generic three-dimensional, 10° single-ramp inlet geometu'

is investigated with the 'optimized' solver. The inlet Mach number is Minlet=3.0 and the

Reynolds number is Re=Sxl05- Efficient simulation of complex shock patterns in such

internal co_2gurations is examined. The grid in a symmetry plane is shown in Fig.21. In

order to study grid dependency and accuracy of the solution, computations were carried

out on three different grids. Although, grids I and II have same dimensions, i.e., 41 nodes

in the axial direction and 41x41 in the cross-flow directions, the fu-st node in the straight



duct portion of the inlet for grid I is 0.002 away from the wails as opposed to 0.0008 in

grid II. Grid III has the same dimensions and distribution of mesh points in the grid II

cross-plane, but has 61 nodes in the axial direction. On average, the computation on a

41x41x41 grid takes about 45 minutes per global pressure relaxation sweep on a

RISC/6000 workstation. This is equivalent to about 6 minutes on a Crav YMP

supercomputer. A total of about 6 global sweeps are required to converge all the residuals

to the tolerance level of 0.000 I.
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Figure 21. Typical view of the grid in the symmetry plane

Figs.22(a-d) depict the a.vial "u" and cross-flow velocity "v" prot-tles along the

symmetry plane at axial stations 1 and 2. Solutions on all three grids have been used for

this comparison. There are no noticeable changes in 'u', and for "v" there are only minor

differences.

Figure 22(a-b). "u" and "v" velocity profiles at "station 1" along the mid-plane
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Figure 22(c-d). "u" and "v" velocity profiles at "station 2" along the mid-plane

Figs.23(a-b) depict the non-dimensional pressure on the symmetry plane lower and

upper walls. With reference to Fig.23(a), the higher pressure level, behind the strong

oblique shock, remains practically constant to the point where the ramp becomes

horizontal (x=l.0). A steep decline in the pressure prot-tle at this point is due to an

expansion fan generated at the convex comer, x=l.0. Further downstream of this point,

the pressure profLle shows a slight tendency to rise. This is due to the impingement of the

reflected oblique shock from the upper to the lower wall in the vicinity, x=l.9. Since the

intensity of the doubly reflected shock is considerably diffused at this point, the rise in

pressure is comparatively small.

_ro _ _ m w _ Inn rw_c_

a.._ i-

_" I J

Figure 23(a.b). Non-dimensional pressure on the lower and upper walls, respectively,

along the symmetry plane



Fig.23(b) depicts the pressure on the upper wall along the symmetry plane. In the

region, 0.0 _< x _< 1.0, the pressure on the upper wall remains thirly constant. The strong

oblique shock, that originates at the beginning of the ramp (x--0.0 at lower wall), impinges

the upper wall at x=l.0. This causes an adverse pressure gradient in the region, 1.0 < x <

1.4. If this negative pressure gradient is sut'ficiently high, it can cause flow reversal.

Subsequently, in the range, 1.4 < x < 2.0 (e,'dt), a steady drop in pressure is observed. This

can be attributed to the influence of the expansion fan, that originates from x=l.0 on the

lower wall and interacts with the reflected shock. This complex interaction of shock wave.

expansion fan and boundary, layer is seen in Figs.24(a-b).

0_

11_111_ _, AYm&, _m _

II
+ m._+ mmm,.,+¢

Figure 24(a-b). Mach number and non-dimensional pressure contours on the

symmetry plane

7, CONCLUSIONS

The validitv of two primitive variable RNS/NS flow solvers, for calculations from

the incompressible limit to supersonic speeds has been demonstrated. The required number

of LU inversions has been significantly reduced for the global pressure relaxation

procedure. ,4 a result, a speed-up of "almost 15 has been achieved for an incompressible

laminar flow in a S-shaped duct. For non-separated supersonic flows, this method ks even

more efficient. The etficiency and the validity of the time-marching, linearized convection

model presented herein, has also been validated with S-duct, and convergent-divergent

choked nozzle computations. Agreement with the data has been quite good thoughout.
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Fig. 2 Comparison of convergence histories for the Linearized convection model and the

pressure relaxation procedure for a laminar, incompressible flow in an S-duct.
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Figure 3. Typical view of the geometry and the grid in the symmetry plane
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Figures 5(a-e). Comparison of the laminar axial velocity profiles on the symmetry

plane at stations 1-5 along the N-duct
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Figure 12 Comparison of skin friction coefficient Cfon the lower wall of the symmetry

plane for various imposed back-pressures
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Figure 15 Streamlines on the (x-y) symmetry plane for the imposed back-pressure of

pb=6.25pe & Ae/Athroat of 3.51
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Figure 16 Streamlines on the (x-y) symmetry plane for the imposed back-

pressure of Pb=3.37pe & Ae/Athroat of 2.3
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Figure 20 Cross-flow velocity "v" at the throat for 31x17x17, 31x33x33 and

51x33x33 grids
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Figure 21. Typical view of the grid in the symmetry plane
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Figure 22(c-d). "u" and "v" velocity profiles at "station 2" along the mid-plane
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Figure 23(a-b). Non-dimensional pressure on the lower and upper walls, respectively,

along the symmetry plane
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